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Lecture No. 1 

Introduction to Method of Weighted Residuals 

• Solve the differential equation L (u) = p(x) in V 

     where L is a differential operator 

 with boundary conditions        S(u) = g(x) on  Γ  

      where S is a differential operator 

• Find an approximation,  uapp, which satisfies the above equation 

𝑢𝑎𝑝𝑝 = 𝑢𝐵 + ∑ 𝛼𝑘

𝑁

𝑘=1

𝜙𝑘(𝑥) 

   where  αk = unknown parameters which we must find 

              ϕ k =  set of known functions which we define a priori 

• The approximating functions that make up uapp must be selected such that they satisfy: 

• Admissibility conditions: these define a set of entrance requirements. 

• Completeness: ensures that the procedure will work. 
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Basic Definitions 

1. Admissibility of functions 

 In order for a function to be admissible a function must 

 Satisfy the specified boundary conditions 

 Be continuous such that interior domain functional continuity requirements are  

                    satisfied 

 Thus for a function  f  to be admissible for our stated problem we must have: 

 b.c.’s satisfied   ⇒ S ( f )=g(x)   on Γ  

 f  must have the correct degree of functional continuity  

e.g. to satisfy 

  𝐿(𝑓) =
𝑑2𝑓

𝑑𝑥2 , the function and its first derivative must be continuous. 
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This defines the Sobelov Space requirements (used to describe functional       

continuity). 

Relaxed admissibility conditions: we may back off from some of the stated 

admissibility conditions – either which b.c.’s we satisfy or what degree of 

functional continuity we require 
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2. Measure of a Function 

• Point Norm defines the maximum value and as such represents a point measure of a 

function 

• Point norm of vector  𝑎 → maximum element of a → amax  

therefore we select the max values of     𝑎 = [
𝑎1

𝑎2
] 

• Point norm of a function  f → maximum value of  f within the domain → fmax  

• Euclidian Norm represents an integral measure:  

• The magnitude of a vector may also be expressed as: 

     |𝑎|
2

= 𝑎1
2 + 𝑎2

2 + ⋯      

                    |𝑎| = [𝑎𝑇𝑎]
1 2⁄

    

This represents the inner produce of the vector onto itself. Note that the mean 

square   value represents an integral measure as well. 
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• Integral measure of a function 

Let’s extend the idea of a norm back to an integral when an infinite number of values 

between x1 and x2 occur.  

𝑎 = [

𝑎1

𝑎2

∙
𝑎𝑛

] ⇒ 𝑛 → ∞ 

Therefore there are an infinite number of elements in the vector.  

This can be represented by the segment  .𝑥1 < 𝑥 < 𝑥2.      

 

The integral norm of the functional values over the segment is defined as: 

‖𝑓‖𝐸
2 = ∫ 𝑓2𝑑𝑥

𝑥2

𝑥1

 

We use a double bar for the Euclidian Norm to distinguish it from a point norm. 

Note that   ‖𝑓‖𝐸 ≥ 0 and only equals zero when   f = 0. Therefore, we can use norms as a 

measure of how well our approximation to the solution is doing (e.g. examine 

‖𝑢𝑎𝑝𝑝 − 𝑢‖) 

We’ll be using Euclidian norms. 
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3. Orthogonality of a function 

• We use orthogonality as a filtering process in the selection of functions and in driving the 

error to zero.  

Vectors are orthogonal when ϴ = 90°  

• A test for orthogonality is the dot product  

or inner product: 

 𝑎 ∙ 𝑏 = |𝑎||𝑏| cosϴ = 𝑎1𝑏1 + 𝑎2𝑏2  

where 

𝑎 = 𝑎1𝑖1̂ + 𝑎2𝑖̂2 

𝑎 ∙ 𝑏 = 𝑎𝑇𝑏 = 𝑏𝑇𝑎 

 

Hence if  a ∙ b = 0 , vectors  a and  b  are orthogonal. This concept can now be extended 

to N dimensions. 
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• Extend the vector definitions of orthogonality to the limit as N → ∞  (i.e. to functions)  

 

 

 

 

 

Examine  ∫ 𝑓 ∙ 𝑔𝑑𝑥
𝑥2

𝑥1
   

If this equals zero, then the functions are orthogonal.  

Therefore orthogonality of functions depends on both the interval and the functions. 

 

 

 

 

 



C E  6 0 1 3 0  F I N I T E  E L E M E N T  M E T H O D S -  L E C T U R E  1           P a g e  8 | 18 

• The inner product of 2 functions establishes the condition of orthogonality: 

∫ 𝑓 ∙ 𝑔 𝑑𝑥 = 〈𝑓, 𝑔〉

𝑥2

𝑥1

 

 

e.g.  sin
𝑛𝜋𝑥

𝐿
𝑛 = 0, 1, 2 … defines a set of functions which are orthogonal over  

the interval [0, L] . The figure shows two such functions which are orthogonal over this 

interval: 

 

 

 

In addition   sin
𝑛𝜋𝑥

𝐿
   functions vanish at the ends of the interval. This is a useful feature. 
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• For real functions: 

          < ϕ1, ϕ2 > = < ϕ2, ϕ1 > 

           α < ϕ1, ϕ2 > = < α ϕ1, ϕ2 > 

                   < ϕ1, ϕ2 + ϕ3 > = < ϕ1, ϕ2 > + < ϕ1, ϕ3 >  

• Linear Independence: A sequence of functions  ϕ1 (x), ϕ2 (x),…, ϕn (x) is linearly 

independent if: 

  α1 ϕ1 + α2 ϕ2 + α3 ϕ3 +… + αn ϕn = 0 

 for any point within the interval only when α1 = 0 for all i.  

        An orthogonal set will be linearly independent. 
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4.   Completeness 

• Consider n functions   ϕ1 ,ϕ2 ,… , ϕn  which are admissible. Therefore they  satisfy 

functional continuity and the specified b.c.’s. In addition these functions are linearly 

independent. 

 

• Now set up the approximate solution: 

• A sequence of linearly independent functions is said to be complete if we have 

convergence as N → ∞ .  

Therefore functions comprise a complete sequence if ‖𝑢 − 𝑢𝑎𝑝𝑝‖ → 0 

as  N → ∞  where u = the exact solution and uapp = our approximate solution.  

Hence we require convergence of the norm.  

 

• Examples of complete sequences: 

• Sines  

• Polynomials 

• Bessel functions 
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Summary of Basic Definitions  

1. Admissibility: these represent our entrance requirements. 

2. Norm: indicates how we measure things 

3. Orthogonality: allows us to drive the error to zero. 

4. Completeness: tells us if it will work? 

 

Solution Procedure 

Given:  

L(u) = p(x)    in  V 

S(u) = g(x)    on  Γ  

We define an approximate solution in series form  

                                            𝑢𝑎𝑝𝑝 = 𝑢𝐵 + ∑ 𝛼𝑘𝜙𝑘
𝑁
𝑘=1                      

where 

  𝛼𝑘  are unknown parameters 

  𝜙𝑘  are a set of known functions from a complete sequence 
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• We must enforce admissibility  

• Boundary condition satisfaction: 

Ensure that  𝑆(𝑢𝑎𝑝𝑝) = 𝑔 on    Γ  

Let’s pick  𝑢𝐵  such that 

     𝑆(𝑢𝐵) = 𝑔    on Γ 

Since 𝑢𝐵 satisfied the b.c.’s, all   𝜙𝑘   must vanish on the boundary 

                                        𝑆(𝜙𝑘) = 0   ∀   𝑘 

Thus each  𝜙𝑘 must individually vanish on the boundary. 

• In addition all  𝜙𝑘‘s satisfy the functional continuity requirements, they form an 

admissible set of functions. 
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• So far we have enforced satisfaction of 𝑢𝑎𝑝𝑝 on the boundary. However we violate the 

d.e. in the interior.  

This defines the Residual Error. 

Ԑ𝐼 = 𝐿(𝑢𝑎𝑝𝑝) − 𝑝(𝑥) 

          ⇒ 

Ԑ𝐼 = 𝐿(𝑢𝐵) + ∑ 𝛼𝑘𝐿(𝜙𝑘) − 𝑝(𝑥)

𝑁

𝑘=1

 

We note that  Ԑ𝐼 represents a point measure of the interior error. 

For the exact solution,  Ԑ𝐼 = 0 ∀ 𝑥  in V 
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• We must solve for N different unknown coefficients, 𝛼𝑘 , k = 1, N.  

To accomplish this we select N different independent functions 𝑤1, 𝑤2, 𝑤3 … 𝑤4  and 

let:  

∫ Ԑ𝐼 𝑤𝑖𝑑𝑥 =  < Ԑ𝐼 , 𝑤𝑖  

𝑣

> = 0  for 𝑖 = 1, 2, … 𝑁   

Therefore we constrain the inner product of the error and a set of weighting functions 

to be zero.  

Note: if we don’t select wi, i = 1, N  functions to be linearly independent, we’ll get 

duplicate equations and ultimately generate a singular matrix. 

 

• Hence we have posed N constraints on the residual 

𝜙i’s are designated as the trial functions 

wi’s are designated as the test functions (they test how good the solution is). 

 



C E  6 0 1 3 0  F I N I T E  E L E M E N T  M E T H O D S -  L E C T U R E  1           P a g e  15 | 18 

 

• Substituting for ԐI into the integral inner product relationship 

∑ 𝛼𝑘 < 𝑤𝑖 , 𝐿(𝜙𝑘) > =  − < (𝐿(𝑢𝐵) − 𝑝, 𝑤𝑖) >                 𝑖 = 1, 2, … 𝑁

𝑁

𝑘=1

 

We define 

𝒂𝑖,𝑘 ≡  〈𝑤𝑖 , 𝐿(𝜙𝑘)〉 

𝑐𝑖 ≡  − 〈𝐿(𝑢𝐵) − 𝑝, 𝑤𝑖〉 

Thus we can write the system of simultaneous algebraic equations 

∑ 𝒂𝑖,𝑘  𝛼𝑘 =  𝑐𝑖           𝑖 = 1, 2, … 𝑁

𝑁

𝑘=1

 

We note that 

 k = column index;     i = row index 

Hence we now have a set of algebraic equations from our d.e.   

              𝒂𝑖,𝑘 𝛼𝑘 = 𝑐𝑖  

and we can solve for our unknowns, 𝛼𝑘. 
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• In the operator L(u) is linear, we get N linear algebraic equations. When the d.e. is 

nonlinear, the method still works but you get nonlinear algebraic equations. 

 

• Then we require the test functions wi to be orthogonal to the residual, since 

< Ԑ𝐼 , 𝑤𝑖 > = 0 

 

In the limit we would require an infinite number of test functions to be orthogonal to the 

residual. In the limit, the error diminishes to zero. 
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Analogy to vectors 

• Let some vector 𝑎 = 𝑎1𝑒̂1  + 𝑎2𝑒̂2 represent the error. Thus the coefficients of the vector  

a1 and a2 represent components of some error. 𝑒̂1 and 𝑒̂2 are the unit directions and also 

represent the test functions which are orthogonal and linearly independent. 

 

 

 

                                          

 

  

 

• Now let’s constrain a such that  𝑎 · 𝑒̂1 = 0 .  This constrains a such that a1= 0. 

• Now select another vector independent of  𝑒̂1. We therefore select  𝑒̂2 for the next 

orthogonality constraint. 
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Therefore we now force  𝑎 · 𝑒̂2 = 0 ⇒ (𝑎2 𝑒̂2) ∙  𝑒̂2 = 0 and thus we constrain a2 = 0. 

• Thus we have drive  a  to zero! 

• For a 3-D vector we would need 3 𝑒̂𝑖’s. 

• When we consider a function, an infinite number of test functions will be needed to drive 

the error to zero. However we also need to increase the number of linearly independent 

functions in the trial functions such that we have a sufficient number of degrees of 

freedom. 


